Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is a crucial step in data analysis that helps uncover patterns, identify anomalies, and gain insights into a dataset. It involves a series of steps to understand the data and prepare it for further analysis. Here is an explanation of the steps involved in the EDA process:

  1. Data Collection: Gather the data from reliable sources, ensuring it is relevant to the problem or question being investigated.
  2. Data Cleaning: This step involves handling missing values, removing duplicates, and dealing with any inconsistencies or errors in the dataset. Cleaning ensures the data is accurate and reliable.
  3. Data Exploration: Start by examining the general properties of the dataset. This includes checking the number of observations and variables, understanding the data types, and identifying any initial patterns or trends.
  4. Univariate Analysis: Analyze individual variables to understand their distributions, central tendencies, and spread. This step helps identify outliers or unusual values that might need further investigation.
  5. Bivariate Analysis: Explore the relationships between different pairs of variables. This can be done through correlation analysis, scatter plots, or grouping variables based on different categories. Bivariate analysis helps uncover potential connections and dependencies.
  6. Multivariate Analysis: Examine the interactions between multiple variables simultaneously. This can involve techniques like clustering or dimensionality reduction to find patterns or groupings within the data.
  7. Visualization: Visualize the data using graphs, charts, or other graphical representations. Visualizations make it easier to identify trends, patterns, and outliers.
  8. Summarization: Summarize the findings from the previous steps, highlighting the key insights and patterns. This step helps in answering specific questions or formulating hypotheses for further analysis.
  9. Iteration: EDA is an iterative process, and it may involve repeating some of the steps mentioned above based on the insights gained or the new questions that arise during the analysis.

Effective exploratory data analysis provides a deeper understanding of the dataset, facilitates the selection of appropriate modeling techniques, and lays the foundation for further data analysis.

The Journey | EDA Project Documentation